Navigation
Public engagement

Becoming a Scientist

Read online for free

Print your own copy

Virus Fighter

Build a virus or fight a pandemic!

Play online

Maya's Marvellous Medicine

Read online for free

Print your own copy

Battle Robots of the Blood

Read online for free

Print your own copy

Just for Kids! All about Coronavirus

Read online for free

Print your own copy

Archive
LabListon on Twitter

Entries in women in science (65)

Wednesday
Nov212012

Women in Molecular Immunology

It is easy to discuss equality in science through anecodote. Just by spending most of my waking adult life on university campuses across three continents I am fairly confident in saying that sexual equality is better in biology and medicine than in chemistry or physics, is great at undergraduate level and lagging at professorial level, and is better in Australia than in Belgium. Much better than anecodote, though, is quantitative analysis, which is why I love this website. If you don't publish your research it is a hobby, not science, and a good publication record is the A to Z of career success for a scientist. This website collates data on authorship across time and across disciplines, at a global level, and assesses the participation of women. There are a few caveats: papers are only assessed if they are listed in the JSTOR database, and a gender is only assigned by first name analysis (using the US Social Security database as a reference, so it probably fails for first names not commonly used in the US). Still, it is an absolutely beautiful reference point.

There is an wealth of knowledge in this database, but my interest is in molecular immunology, so how are we performing? Well, the question kind of depends on "compared to what?" In 1991-2010, 29.7% of authors on molecular immunology papers were women. This is an improvement from 1971-1990 (23.9%), and a huge improvement from pre-history (being everything from 1970 and before, at 13.7%). It is also outstanding compared to fields such as mathematics, where women still only account for 10% authors (maths clearly has a problem with women; anyone who says the reverse is kidding themselves). But 29.7% is still a long way from 50%. Even among first authors (typically PhD students or post-docs), only 33.2% of molecular immunology authors were women, and among last authors (typically professors) only a dismal 15.4% were women. 

I've said before what I think the problem is (hint, it is men), but this database gives us a resource to see who is fixing the problem, and how fast, and who is content to live in the stone-age and try to do science with a 50% lobotomy. So many questions arise. Why has virology been more equal than immunology throughout the time period? I would love to see a break-down by country to know if this is a discipline-thing, or is a statistical quirk due to regional differences in sexism correlating by chance with regional differences in research focus.

Oh, and for the trivia-minded, within molecular biology the most equal area of research is heat shock proteins, while the most sexist is prostaglandins. In the entire database, the most female-dominated area of research is gender studies (57.8% female authors), while the most male-dominated area of research is a discipline of mathematics called Riemannian manifolds (99.3% male authors). Check it out.

Tuesday
Jun262012

AIG laboratory members successful at the FWO

This week we received exciting news that the Autoimmune Genetics laboratory had three successful candidates at the FWO, the premier fellowship program in Belgium. 

Dr Stephanie Humblet-Baron won an FWO Post-doctoral Fellowship award to research a new genetic disease caused by a loss of dendritic cells:

In the immune system, dendritic cells (DCs) are a subset of white blood cells that are specialized to activate lymphocytes when a pathogen is present In the absence of DCs, activation of lymphocytes and clearance of infections is impaired.  A new genetic disease has recently been identified where patients have no DCs, and surprisingly not only do they have poor clearance of infections, but they also have a large expansion of myeloid cells in their blood. For this project we have created a mouse model of this disease, which we will use to try to understand the biology of the myeloid expansion and to test potential therapeutics. 

Dr Susan Schlenner won a Pegasus Post-doctoral Fellowship award to move to the laboratory from Harvard. Here she will use novel genetic approaches to understand the biology of regulatory T cells.

Regulatory T cells are an important subset of white blood cells that have the ability to prevent the immune system from attacking components of the body (“autoimmunity”) and from attacking harmless environmental components (“allergy”). In order to exert this function the regulatory T cells need to be educated as to which components are safe and should be protected from immune attack. The location where this occurs is highly controversial as previously there have not been the correct tools to do functional tests. This project aims to generate a sophisticated set of genetically-altered mouse strains to allow measurement of where regulatory T cells are educated, and then to use these mice in models of autoimmunity and allergy. Having more knowledge about the education process of regulatory T cells may allow the future development of therapeutic interventions in those patients where regulatory T cells fail to prevent autoimmunity or allergy.

Dr Lien Van Eyck won an FWO PhD Fellowship, to move from the clinic to the laboratory to study auto-inflammatory diseases.

Blau Syndrome (BS) and Early Onset Sarcoidosis (EOS) are rare monogenic auto-inflammatory diseases characterized by a clinical triad of granulomatous arthritis, uveitis and rash. Extended manifestations with potentially high morbidity have been reported recently. The pathologic hallmark of BS/EOS is the presence of multinucleated giant cell and epithelioid cell granulomas in affected tissues. Both diseases are associated with gain-of-function mutations in the NOD2 gene. NOD2 is a specialised intracellular protein that plays a critical role in the regulation of the host innate immune response through recognising conserved microbial molecular signatures, thus leading to the induction of pro-inflammatory and anti-microbial responses as well as apoptosis. While the genetic basis of BS/EOS has been characterized, the molecular mechanisms by which NOD2 mutations drive granuloma formation and the development of sarcoidosis remain unclear. A better understanding of these mechanisms is of direct relevance for the development of targeted immunotherapies. The present project aims to determine the mechanisms by which NOD2 gain-of-function mutations lead to immunopathology in BS/EOS by developing a murine model with a gain-of-function mutation in NOD2. This model will allow for a full characterization of the immunopathology of NOD2 associated inflammation, and for the unravelling of molecular and cellular mechanisms involved in disease pathogenesis.

Friday
Jun242011

FWO post-doctoral fellowship awarded to Bénédicte Cauwe

This week it was announced that Dr Bénédicte Cauwe won an FWO post-doctoral fellowship to perform research in the Autoimmune Genetics Laboratory. Dr Cauwe recently finished her PhD in the laboratory of Professor Ghislain Opdenakker at the Rega Institute and will continue her research on systemic lupus erythematosus at the Autoimmune Genetics Laboratory.

Thursday
Apr072011

IRO fellowship won by Dina Danso-Abeam

Today it was announced that Ms Dina Danso-Abeam in the Autoimmune Genetics Laboratory was awarded an IRO fellowship to perform research towards her PhD. 

Friday
Nov202009

Science is not a family-friendly career

There is a brief article in this week's Nature entitled "Tenure or family?"

Marriage and childbirth are what stop most female US graduate students from becoming tenured researchers, according to a report by Washington DC think tank the Center for American Progress (CAP) and the University of California, Berkeley, School of Law. Staying Competitive: Patching America's Leaky Pipeline in the Sciences found that married mothers with a PhD are 35% less likely to enter a tenure-track position in the sciences than married fathers with PhDs, according to a National Science Foundation survey. And they are 27% less likely than their male counterparts to get tenure after securing a tenure-track post. The report advises universities and funding agencies to create family-friendly policies, including six weeks of paid maternity leave and a week of paid parental leave.


Obviously there is an enormous problem in career progression for women in science. A 35% reduction at the tenure-track stage and a 27% further reduction at the tenure stage - women get whittled out of the academic career pathway. This article kind of misses the point though. Marriage and children are not what stops women progressing in science. Extra maternity leave is not going to help if it puts women further behind the publication scramble. To put it bluntly, in my opinion this is the real problem:

1. A career in science is horribly unfriendly to a balanced life. There is no security or safety, every step of the way 90% of people are going to jump or be pushed. Everyone is smart at the top, that isn't enough, you also have to be lucky and obsessively determined. Most tenure-track professors don't even take weekends or holidays - they can't afford to be left behind.

2. Society still has structural sexism built in. Yes, women are now free to pursue any career they want, in addition to their previous workload. If it was purely child-rearing that was a problem the blockade would be in all scientists who have children. Instead the burden falls disproportionally on women scientists who have children, because on average they still end up doing more of the work than men. Consider the recommendations of the report: six weeks of paid maternity leave and a week of paid parental leave. Even if the recommendation is passed, women will be expected to do six times more child-rearing work than men.

These problems are much harder than simply paid parental leave, although obviously that would be a positive contribution. Instead we need to tackle the two fundamental issues. The science career needs to be made more family friendly, or at least not a horrific all-consuming ordeal. We can't continue with the same massive bottle-necks in careers or with a system where every person works themselves to death to stay in the game one more round. Competitive peer review has grown into a destructive monster that chews people up and spits them out. Secondly men need to pull their own weight rather than expecting women to sacrifice their time to make up for a thoughtless spouse.

Page 1 ... 3 4 5 6 7