Navigation
Public engagement

Becoming a Scientist

Read online for free

Print your own copy

Virus Fighter

Build a virus or fight a pandemic!

Play online

Maya's Marvellous Medicine

Read online for free

Print your own copy

Battle Robots of the Blood

Read online for free

Print your own copy

Just for Kids! All about Coronavirus

Read online for free

Print your own copy

Archive
LabListon on Twitter

Entries in women in science (64)

Monday
Jun222015

Inspiring women in science, part VI

Rosalyn Yalow was born in the USA in 1921. She developed the radioimmunoassay technique, which can measure the concentration of hormones in blood, and studied insulin levels in diabetes. The figure above is of the electrophoresis of pure insulin-I181, of free insulin from the plasma of an control subject injected with insulin-I181, and of free and antibody-bound insulin from an insulin-treated subject injected with insulin-I181, from the paper “Insulin-I181 metabolism in human subjects: demonstration, of insulin binding globulin in the circulation of insulin treated subjects”, J Clin Invest, 1956; 35(2): 170–190. She received the Nobel Prize in 1977.

Like the quote by Françoise Barré-Sinoussi, Rosalyn Yalow highlights the hope of science; however she also bears a warning. It is our responsibility to keep science alive. Inventing vaccines means little if, a generation after their transformative impact on humanity, we put them aside. The social forces aligned against science are strong, and we always need to understand that the advances that we have made as a species were not inevitable and are not immutable. Do not take for granted the luxuries (both physical and intellectual) given to us by science, for they shall fast dissapear if we do not support the bedrock of the scientific method that supports it all.

Sunday
Jun212015

Inspiring women in science, part V

Rosalind Franklin was born in England in 1920. She produced the X-ray diffraction images of DNA, and independently determined that DNA was helical and that the phosphate groups were on the outside. The figure above is from “Molecular Configuration in Sodium Thymonucleate”, published in Nature, 1953; 171:740-741, in the same issue as the paper published by Watson and Crick. She later led work on the structure of the tobacco mosaic virus and the polio virus. She died in 1958 from ovarian cancer.

As an aside, this is pretty close to something I tell all potential students in my lab: science is a lifestyle choice more than a career. As evidence, I am posting this from the lab on a Sunday afternoon.

Saturday
Jun202015

Inspiring women in science, part IV

Christiane Nüsslein-Volhard was born in Germany in 1942. She and Eric Wieschaus identified many of the genes that control the embryonic development of Drosophila. The figure above is of a wildtype fruitfly embryo, and those homozygous for mutations in Krüppel, hunchback, and knirps, from “Mutations affecting segment number and polarity in Drosophila”, Nature, 1980; 287:795-801. She is also associated with the discovery of Toll, which led to the identification of toll-like receptors. She received the Nobel Prize in Physiology or Medicine in 1995 for her discoveries into how complex multicellular organisms develop from single cells. The quote below is from her 2006 book, “Coming to Life: How Genes Drive Development”.

Clearly, biology is the most interesting of the sciences.

Friday
Jun192015

Inspiring women in science, part III

Elizabeth Blackburn was born in Australia in 1948. She and Carol Greider discovered telomerase. Telomerase is an enzyme that loss of important DNA from chromosome ends by adding extra bits of DNA to the end of strands, and plays a role in aging and cancer. The figure above is DNA from a telomerase enzyme reaction, from “Identification of a specific telomere terminal transferase activity in Tetrahymena extracts”, published in Cell, 1985; 43:405–413. She received the Nobel Prize in 2009. When questioned about the large number of women working on telomeres, she replied that “it’s fairly close to the biological ratio of men and women. It’s all the other fields that are aberrant.”

Wednesday
Jun172015

Inspiring women in science, part II

Lise Meitner was born in Austria in 1879. She and Otto Hahn discovered the first long-lived isotope of protactinium and articulated how the nucleus of an atom could be split into smaller parts in their paper “Disintegration of Uranium by Neutrons: A New Type of Nuclear Reaction” published in Nature in 1939. The figure above illustrates fission fragments in an uranium-lined ionization chamber connected to an oscillograph. The large pulses were caused by ionization bursts of fast moving nuclei from uranium bombarded by neutrons. Element 109, meitnerium, is named in her honour.

To me, this quote counters the argument that theologists often direct to athiests - that to not believe in the supernatural is to live in a world that is flat and dull. No! Far from it! To pull away the curtains of silly supernatural explanations is to allow yourself to peak at reality, a truth that is far more awe-inspiring and magestic then anything that could have been invented by primitive desert-dwellers. 

Monday
Jun152015

Inspiring women in science, part I

Rather than directly address the ridiculous sexist comments by Tim Hunt, I thought I would post a series of quotes by inspiring female scientists. These quotes adorn my office, and were a gift from my wife - who is an inspiring scientist herself.

Françoise Barré-Sinoussi was born in France in 1947. She was part of the team that discovered and identified HIV as the cause of AIDS in 1983. The figure above is of viruses budding from lymphocytes, from “Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS)”, Science, 1983; 868-871. She also identified important factors contributing to mother-to-child transmission of HIV. She received the Nobel Prize in 2008.

To me this quote encapsulates the inspiring nature of science. When you look around yourself, science is everything that has transformed life from being nasty, brutish and short, to one where many of us have love, luxury and peace. This transformation can be extended to everyone if only we use science and evidence-based decision-making.

Friday
Dec192014

PhD graduation

Congratulations to Dina Danso-Abeam who just graduated from her PhD in the laboratory!


Thursday
Apr242014

Lei Tian wins prestigious research award

Congratulations to Autoimmune Genetics Laboratory student Lei Tian, who just won the 2013 National Award for Outstanding Self-financed Chinese Students Study Abroad by the China Scholarship Council. The prize was granted for her doctoral research on regulatory T cells and diabetes development.

Wednesday
Jun262013

Sex discrimination in academia - Flanders edition

This is a very interesting article about the sex discrimination in academia in Flanders. In Flanders only 11% of professorships are held by women, making Flanders one of the worst regions in the EU for sex equality in academia. The "glass ceiling index" has been calculated for Belgium as a whole at 2.25, meaning that it is 2.25 times harder for a woman to get a professorship than a man - again, almost the worst value in the EU. 

As the largest and oldest university in Belgium, KU Leuven bears a great deal of responsibility for this situation. Despite 600 years of history, KU Leuven has never had a female Rector. Even in Biomedical Sciences, a field dominated by women at the graduate level, only 25% of professors are female, and the situation gets much worse in the traditionally male-dominated areas. Worst of all, despite performing so badly in this area, the university has no systematic policy directives to even start to correct the problem. To try to compete in an international high performance field while ignoring half of the available talent is absurd, to say the least.

Is this a cut-and-dried case of blatant sexism? In consideration, I would suggest probably not. The effect is certainly sexist, women are not getting opportunities given to men. The primary cause, however, is probably not so much sexism as conservatism. Marc Hooghe (KU Leuven) says "What Belgian universities still have is this kind of closed-shop attitude", where old white men pick people who look like themselves for the next generation academia. Alison Woodward (VUB) points out "In Belgium, no one knows about two-thirds of the jobs. How did that guy get it?" and notes that this old boys' club excludes not only women, but also foreigners and ethnic minorities. So rather than just trying to improve parental issues*, perhaps Flemish universities should instead focus on open merit-based hiring. If women are just given a truly equal chance, I have no doubt that soon they will hold at least 50% of positions.

 

* One of my pet peeves, as the data showing that having a child is detrimental to women but not men is not a cause of discrimination - it is an effect of discrimination. If men actually did half the parenting, then parental issues would have absolutely no effect on sex equality. By all means, try to make child raising easier, just don't think that this alone creates sex equality.

Wednesday
Nov212012

Women in Molecular Immunology

It is easy to discuss equality in science through anecodote. Just by spending most of my waking adult life on university campuses across three continents I am fairly confident in saying that sexual equality is better in biology and medicine than in chemistry or physics, is great at undergraduate level and lagging at professorial level, and is better in Australia than in Belgium. Much better than anecodote, though, is quantitative analysis, which is why I love this website. If you don't publish your research it is a hobby, not science, and a good publication record is the A to Z of career success for a scientist. This website collates data on authorship across time and across disciplines, at a global level, and assesses the participation of women. There are a few caveats: papers are only assessed if they are listed in the JSTOR database, and a gender is only assigned by first name analysis (using the US Social Security database as a reference, so it probably fails for first names not commonly used in the US). Still, it is an absolutely beautiful reference point.

There is an wealth of knowledge in this database, but my interest is in molecular immunology, so how are we performing? Well, the question kind of depends on "compared to what?" In 1991-2010, 29.7% of authors on molecular immunology papers were women. This is an improvement from 1971-1990 (23.9%), and a huge improvement from pre-history (being everything from 1970 and before, at 13.7%). It is also outstanding compared to fields such as mathematics, where women still only account for 10% authors (maths clearly has a problem with women; anyone who says the reverse is kidding themselves). But 29.7% is still a long way from 50%. Even among first authors (typically PhD students or post-docs), only 33.2% of molecular immunology authors were women, and among last authors (typically professors) only a dismal 15.4% were women. 

I've said before what I think the problem is (hint, it is men), but this database gives us a resource to see who is fixing the problem, and how fast, and who is content to live in the stone-age and try to do science with a 50% lobotomy. So many questions arise. Why has virology been more equal than immunology throughout the time period? I would love to see a break-down by country to know if this is a discipline-thing, or is a statistical quirk due to regional differences in sexism correlating by chance with regional differences in research focus.

Oh, and for the trivia-minded, within molecular biology the most equal area of research is heat shock proteins, while the most sexist is prostaglandins. In the entire database, the most female-dominated area of research is gender studies (57.8% female authors), while the most male-dominated area of research is a discipline of mathematics called Riemannian manifolds (99.3% male authors). Check it out.