Navigation
Public engagement

Becoming a Scientist

Read online for free

Print your own copy

Virus Fighter

Build a virus or fight a pandemic!

Play online

Maya's Marvellous Medicine

Read online for free

Print your own copy

Battle Robots of the Blood

Read online for free

Print your own copy

Just for Kids! All about Coronavirus

Read online for free

Print your own copy

Archive
LabListon on Twitter
Thursday
Jul142016

Supermuizen laten muizenissen verdwijnen

De Morgen - 14 Jul. 2016 - Pagina 17

Als ze diëten, leven ze langer. Als ze kaneel eten, leren ze sneller. En als ze genetisch gemanipuleerd zijn, genezen ze van doofheid. Dagelijks komen wetenschappers met berichten over wonderlijke muizenvondsten, met als doel de mens beter te maken. 'Supermuizen helpen zelfs tegen schuldgevoelens.'

`Blinde muizen kunnen weer zien!' Het is, inclusief uitroepteken, een muizenbericht dat agentschappen voor wetenschapsnieuws maandag aanboden. In vakblad Nature Neuroscience meldden onderzoekers dat ze voor het eerst beschadigde netvliesneuronen zodanig kunnen manipuleren dat de beschadiging ongedaan gemaakt wordt en er opnieuw optische zenuwvezels aangemaakt worden. De optische zenuw is de 'datakabel' van het oog. Hierlangs reist informatie die via het netvlies binnenkomt in de hersenen, die de informatie verwerken.

Maar door beschadigde netvliesneuronen kan dat helemaal fout lopen. Tot nu werd niet aangenomen dat die fout op zo'n diepliggend niveau ongedaan gemaakt kon worden. "Maar onze muizen tonen dat zoogdieren een grotere capaciteit hebben voor herstel van het centrale zenuwstelsel dan we dachten", zegt hoofdonderzoeker Andrew Huberman van de Stanford University School of Medicine.

Het opmerkelijke herstel bij de muisjes is het resultaat van intense visuele stimulatie in combinatie met gentherapie. Binnen de drie weken herstelden de muizen 500 keer sneller van de beschadiging dan gewoonlijk. Zoals altijd is de hamvraag of dat zal lukken bij mensen die om dezelfde reden (deels) blind zijn.

En zo gaat het altijd met muizennieuws. Ze lopen minder verouderingsschade en kanker op als ze drie genetische ouders hebben. Ze worden slimmer en leren sneller als je bepaalde genetische manipulaties doorvoert. Gemodificeerde muizen worden nooit dik en kunnen mannelijk zijn zonder Y-chromosoom. De veroudering van de huid kan worden omgekeerd. Ze kunnen herinneringen wissen...

Klinkt allemaal geweldig, maar wat die hocuspocus precies voor de mens kan betekenen, is vaak niet duidelijk en daardoor ontstaat, zeker op nieuwsredacties, een allergie aan nieuwtjes waarin muizen de superheld zijn.

Toch blijven ze maar komen en worden miljarden en miljarden euro's en vooral dollars gestopt in onderzoek waarbij genetisch gemanipuleerde varianten van de knaagdieren de show stelen door soms het onmogelijke te laten zien, zoals kanker en veroudering afblokken.

Dat komt omdat, tussen de massa pogingen en voorlopige resultaatjes, supermuizen af en toe 'prestaties neerzetten' of effecten laten zien die de mens wel degelijk vooruithelpen.

Superneus

Zo zijn er sinds kort muizen die dankzij genetische manipulatie een superneus kregen aangemeten en ingezet kunnen worden om explosieven en drugs te zoeken. In tegenstelling tot bijvoorbeeld honden en ratten die worden getraind om hetzelfde te kunnen, zijn de 'supersniffers' dankzij hun uitzonderlijke neus meteen gebruiksklaar om explosieven en drugs te ontdekken.

Het is de Belgische neurowetenschapper Charlotte D'Hulst die met haar team aan het Amerikaanse Hunter College in New York de genen van de muizen zodanig veranderde dat ze bepaalde geuren sterker kunnen ruiken. Hun supersniffers kunnen nu al twee chemische geuren gelijkend op jasmijn en pepermunt beter detecteren. Eerder modificeerden ze ook al de genen van muizen om de chemische stof DNT, een minder explosieve stof dan TNT, beter te kunnen herkennen.

Bedoeling is nu dat de snuffelhelden ook de explosieve stof TNT snel kunnen opsporen. Wanneer ze TNT ruiken, zouden de muizen door hun versterkte reukvermogen een beroerte of epilepsieaanval krijgen. Door een chip onder de huid in te planten, kunnen de wetenschappers die gedragsveranderingen waarnemen op een computer. Vervolgens kan een mens de bom of landmijn onschadelijk maken.

Ratten worden al langer ingezet om explosieven te vinden, met als voordeel dat ze niet veel geld kosten en ook niet verbonden zijn aan slechts één trainer, zoals bij honden.

Maar met de muizen van D'Hulst kan nog heel wat geld én tijd bespaard worden. De ratten die nu gebruikt worden, moeten immers altijd een trainingsperiode van ongeveer negen maanden doorlopen. De genetisch gemodificeerde muizen met een superneus kunnen die stap overslaan.

Bovendien hebben muizen nog meer voordelen. "Ratten zijn heel effectief", zegt D'Hulst. "Maar muizen, die dezelfde voordelen hebben als mijndetectors, zijn nog goedkoper om bij te houden én om te kweken." Ook is het bij hen relatief eenvoudiger om de cellen in de neus aan te passen. Daarom zoeken D'Hulst en co. eveneens naar een receptor in de neus van muizen die geactiveerd kan worden door drugs. Dan kan de supersniffer ook de drugshond vervangen om onder meer cocaïne op te sporen.

Andere zintuigen van muizen vele keren 'upgraden' of deels of volledig herstellen, zoals in het meest recente onderzoek van Huberman, biedt de wetenschap steeds meer inzicht in hoe dat ook bij de mens zou kunnen. En dat geldt voor een resem andere gezondheidsfactoren.

Alleen fastfood

Kennis over de rol van lichaamsbeweging, dieet en overgewicht, bot-en spierontwikkeling en genetische doping valt bijvoorbeeld te rapen bij genetisch gemanipuleerde muizen die de cartooneske namen 'Mighty Mouse' en 'Marathonmuis' kregen.

Die eerste heeft 70 procent meer spieren dan een natuurlijk model, de tweede kan zonder enige training tot twee keer langer lopen dan niet-gewijzigde soortgenoten. Door een specifiek gen te manipuleren, bootsten de onderzoekers met andere woorden het effect van lichaamstraining na. En als onverwachte surplus verhinderde die verandering in de genen ook dat de marathonmuis verdikt, zélfs als hij inactief is en alleen fastfood eet.

Af en toe duiken nog wel meer van die ultieme supermuizen op, die door soms maar één genverandering niet één maar een hele resem voordelen hebben, zoals topsportprestaties afleggen, langer leven, veel eten maar niet verdikken én een veel actiever seksleven.

Zo'n creatuur schiepen Amerikaanse onderzoekers die de werking van een enzym wilden bestuderen tot hun eigen verbazing. Hoewel het team meteen benadrukte dat een menselijke toepassing absoluut uit den boze is, zou het volgens hen kunnen dat met de vondst nieuwe medicijnen worden gemaakt die ook de mens 'superder' maken. Spaanse wetenschappers wisten dan weer 'supermuizen' te creëren die gegarandeerd kankervrij zijn en bijna de helft langer leven dan soortgenoten.

De onderzoekers wijzigden eerst de genen van de muizen om ze resistent te maken tegen kanker. Daarna verhoogden ze de hoeveelheid van het speciale enzym telomerase, dat de veroudering van cellen kan tegengaan. Daardoor werd hun verouderingsproces met 40 procent vertraagd omdat het enzym hun cellen herstelde zodat ze langer 'jong' bleven. Op vergevorderde leeftijd blijken de beestjes betere spieren, een gezonder huidweefsel en een betere stofwisseling te hebben.

Uiteindelijk wil de wetenschap natuurlijk geen supermensen maken, wél ziektes in de kiem smoren. Omdat kanker, zwaarlijvigheid en neurologische ouderdomsziektes zoals alzheimer tot de meest problematische sluipmoordenaars behoren waar de mens vandaag mee af te rekenen krijgt, zijn de vips onder de supermuizen de exemplaren die tonen hoe die aandoeningen schaakmat gezet kunnen worden.

Wat kanker betreft, zijn muizen, door hun gelijkenis met mensen, al meer dan een eeuw belangrijk in het onderzoek en dat is alleen maar toegenomen sinds genetische manipulatie mogelijk werd. "Het grote voordeel is dat je bij de diertjes de ontwikkeling van kanker vanaf de allereerste cel kunt volgen en er interactie is met andere cellen", zegt moleculair bioloog Jan Cools (VIB/ KU Leuven). "Dat is een echte surplus tegenover in-vitrocelsystemen."

De belangrijkste supermuizen in het kankeronderzoek zijn ongetwijfeld de modellen waarin is aangetoond hoe muizen kanker helemaal verslaan met hun immuunsysteem.

Cools: "Ondertussen is immuuntherapie ook bij mensen een groot succes, maar de methode moet nog verder ontwikkeld worden en dan blijven de genetisch gemanipuleerde muizen een erg goed studiemodel. Zo hebben we bijvoorbeeld ontdekt dat niet zomaar elke cel in een tumor kan veranderen. En we kunnen veel preciezer specifieke kankers in detail bestuderen, zowel als het gaat over hoe ze ontstaan en evolueren als over doelgerichte behandeling."

Ook in het onderzoek naar alzheimer zijn muizen waaraan gesleuteld werd doorslaggevend, vandaar de vele berichten over de knaagdiertjes die veel slimmer worden, een zwaar opgekrikt geheugen krijgen, herinneringen kunnen wissen of deels genezen van degeneratieve neurologische aandoeningen.

"Door een alzheimergen in te planten bij muizen is voor het eerst de genetische component van de ziekte bewezen, wat een enorme boost voor het onderzoek heeft betekend", zegt moleculair bioloog Bart De Strooper (VIB/KU Leuven). "Tegelijkertijd is zo, bijna per toeval, een belangrijk principe voor genezing ontdekt. Omdat muizen geen mensen zijn, krijgen ze de ziekte maar deels. Logischerwijs kun je dat effect versterken door de plakkers die alzheimer in de hersenen veroorzaken onder de huid te injecteren. Maar bij de diertjes die die injectie dan krijgen, neemt het aantal plakkers net sterk af, wat wijst op genezing."

Een tweede ontdekking, waar De Strooper zelf bij betrokken was, is dat een ander alzheimergen weghalen ervoor zorgt dat de plakkers niet meer worden aangemaakt.

Al even spectaculair zijn de doorbraken bij superintelligente muizen en muizen met een uitzonderlijk geheugen. Eén team heeft een valse herinnering bij muizen aangebracht, een ander slaagde erin 'sociale herinneringen', in dit geval een ontmoeting met een andere muis, te wissen. Ook daarbij komt genetische manipulatie kijken. Een ander voorbeeld zijn muizen waarbij één mutatie geassocieerd met autisme wordt weggehaald, waardoor ze geen nestjes meer maken. Volgens sommige onderzoekers ligt de weg dan ook open naar nieuwe behandelingen voor medische en psychiatrische aandoeningen zoals depressie, posttraumatische stress en ook alzheimer.

Achterhaalde ideeën

De Strooper bevestigt het belang daarvan en wijst erop dat de muizen de ideale onderzoeksobjecten zijn omdat je erop kunt testen wat je niet bij mensen, maar om ethische redenen ook niet bij hogere primaten kunt uitzoeken.

Zo mogelijk nog meer tot de verbeelding spreekt de muis die nooit dik wordt. Zo lopen er al verschillende exemplaren rond en ze hebben de kennis over obesitas fundamenteel bijgespijkerd. Professor Adrian Liston (VIB / KU Leuven) heeft zo'n eeuwig slanke muis.

"Wat en hoeveel ze ook eet, nooit neemt haar gewicht toe", zegt Liston. De muis heeft een mutatie van het leptinereceptorgen, waarbij zwaarlijvigheid die via de lever ontstaat, is weggenomen. Bij andere muizen is dat gebeurd in vetweefsel of in de hersenen. "Waar het op neerkomt, is dat we veel beter begrijpen hoe dat hormoon dat vetopslag regelt precies werkt", zegt Liston.

"Zo weten we bijvoorbeeld dat obesitas kan ontstaan door hoe het hormoon op het brein en niet rechtstreeks op het vet inwerkt. Dankzij de gemodificeerde muizen weten we vandaag dat vetopslag via verschillende wegen kan ontstaan, zowel door mutaties in de hersenen, organen zoals de lever of in het vet zelf."

En dat is volgens de expert een manier om achterhaalde ideeën bij leken en in de medische wereld af te voeren en mensen met overgewicht te verlossen van een schuldgevoel. Liston: "Overgewicht gaat niet enkel over te veel eten, te weinig bewegen en een gebrek aan discipline. Dat foute idee staat nog altijd overeind, ook in de medische wereld, en leidt zelfs tot depressie bij mensen die te veel wegen. Dankzij muizen weten we dat het verband met wat je eet maar gedeeltelijk is omdat er duidelijk een hele resem verschillende genetische factoren spelen die mee bepalen wat er met het voedsel dat je eet gebeurt. En dat het dus gedaan moet zijn met de patiënten de schuld te geven."

Niet naïef

Maar wat we zeker niet mogen doen, zo benadrukken De Strooper en Liston, is naïef aannemen dat wat bij muizen kan, zomaar toepasbaar is op mensen. De Strooper: "De gelijkenissen met mensen zijn groot, maar er zijn natuurlijk aanzienlijke verschillen. De genetisch gemanipuleerde muizen blijken erg belangrijk om ziektes en de werking van bijvoorbeeld de hersenen te begrijpen en nieuwe principes te ontdekken, maar daarmee heb je nog geen therapie voor mensen.

"En wanneer het bijvoorbeeld gaat over de doorbraken in het alzheimeronderzoek, zijn er al miljarden gepompt in medicijnen ontwikkelen op basis van de vondsten bij de muizen." Ook bij obesitasonderzoek is dat het geval. Net daarom ziet De Strooper nog een andere reden om het over 'supermuizen' te hebben: "Ze trekken superveel centen aan voor onderzoek dat concrete toepassingen moet opleveren en dat heeft nog niet superveel resultaat opgeleverd."

Tuesday
Jul122016

The Genetic Components of Rare Diseases

Last fall, the conclusion of the 1000 Genomes Project revealed 88 million variants in the human genome. What most of them mean for human health is unclear. Of the known associations between a genetic variant and disease, many are still tenuous at best. How can scientists determine which genes or genetic variants are truly detrimental?

Patients with rare diseases are often caught in the crosshairs of this uncertainty. By the time they have their genome, or portions of it, sequenced, they’ve endured countless physician visits and tests. Sequencing provides some hope for an answer, but the process of uncovering causal variants on which to build a treatment plan is still one of painstaking detective work with many false leads. Even variants that are known to be harmful show no effects in some individuals who harbor them, says Adrian Liston, a translational immunologist at the University of Leuven in Belgium who works on disease gene discovery.

...

Read more in The Scientist

Monday
Jul042016

Menzies Foundation

Thursday
Jun302016

Congratulations Dr James Dooley!

A big round of congratulations to Dr James Dooley, who successfully defended his PhD yesterday.

James has been the senior scientist in the Translational Immunology laboratory since its foundation in 2009, and integral to our success. However James did not come to this status by the standard academic pathway, instead he developed his scientific skills through on-the-job experience in the laboratory of Prof Andrew Farr at the University of Washington (Seattle, US). Under the mentorship of Prof Farr, James developed his expertise in thymus biology, contributing to major breakthroughs in Treg biology and TSLP, and leading the effort on one of the key discoveries from the Farr laboratory - the discovery of the cervical thymus in 2006.

The 13 publications James had with Prof Farr, and a publication with Prof Page Lacy during his brief stay in Canada, convinced the KUL doctoral school that James could enter a PhD without previously going through a Bachelor's degree or Masters degree. James's staggering successes during his PhD validates this trust, and proves that there are multiple successful pathways to developing into a leading scientist.

Among James's key scientific successes during his PhD have been:

  • The identification of the role of microRNA in thymus biology, in particular the function of miR-29a in setting the threshold for thymic involution. Led to a first-author publication in Nature Immunology in 2012, and multiple productive collaborations on the role of miR-29a in other tissues.
  • The development of a high-throughput immune phenotyping platform for understanding variation in the immune system. The platform was published in Nature Immunology in 2016, and forms the basis for multiple clinical collaborations.
  • The discovery of intrinsic variation in the robustnes of beta cells in the pancreas, and how genetic and environmental factors can push the beta cells from a state of robust survival (granting resistance to diabetes) to fragile death or senescence (conferring susceptibility to diabetes). This work was published in Nature Genetics in 2016.

It addition to these key publications, James published many other papers as first, middle or last author, across a sweep of topics ranging from immunology to endocrinology and neuroscience, with an amazing 34 scientific publications during his PhD.

So our deepest congratulations to the well-earned PhD of Dr Dooley!  

Wednesday
Jun292016

Fragility and Resilience in Diabetes

Two summers ago, Tony Cervati was tearful as he drove to the hospital to see his 6-year-old son Kyan, who had just been admitted and diagnosed with type 1 diabetes. “I knew damn well what to do,” said Cervati, a database administrator in Durham, North Carolina , who has led an active and healthy life as a type 1 diabetic himself.

Read more...

Thursday
Jun232016

Journal club: Transmissible cancer may not be so rare

Cancer is a disease of our own cells gone wrong. Normally our cells work in harmony with each other, taking cues from each other as to when to proliferate, when to differentiate and when to die. In cancer, mutation takes away this level of regulation, leaving a "selfish cell" that ignores all of these signals and proliferates uncontrollably, even to the point of killing the host.

There have been a handful of rare cases where cancers can actually physically cross-over from one individual to another, such that the second individual is actually growing cancer cells that are not self, but are fully derived from the original host. This has been seen in a few human cases as well as well-described transmissible cancers in Tasmanian Devils and dogs. There was even a recent case study that suggests a tapeworm cancer crossed over into the host. In general, however, it is thought that this type of event is going to be exceptionally rare. Even ignoring the protective effect of our immune system killing foreign cells, it is not like cells from one individual can just float through the air to colonise another. Except, of course, under the water.

A paper just published in Nature looks for transmissible cancers in mussels and clams and finds three examples of cancer cells from one individual clam or mussels infecting and growing in other indiviudals of the same, or even different, species. With high population densities and water flow acting to directly transfer cancer cells, it is probably that transmissible cancers are actually a common feature in many marine environments.

Nature 2016, in press. Widespread transmission of independent cancer lineages within multiple bivalve species. Metzger, Villalba, Carballal, Iglesias, Sherry, Reinisch, Muttray, Baldwin, Goff.

Wednesday
Jun222016

Congratulations to Dr Stephanie Humblet-Baron!

Earlier this year Dr Stephanie Humblet-Baron published a major study on the disease mechanism behind the lethal inflammatory disease Hemophagocytic lymphohistiocytosis (HLH).

Today she was awarded an FWO post-doctoral mandate to continue her ground-breaking work on HLH! The congratulations of the Translational Immunology Laboratory go out to Stephanie for this well-earned recognition!

Tuesday
Jun212016

EU-LIFE Science Newsletter

Collaboration news from VIB & Babraham Institute


Enormous diversity is observed in the human immune system, the majority of which is non-genetic in origin. In a collaboration between the VIB and the Babraham Institute, Adrian Liston and Michelle Linterman dissect the causes of immune variation and find age and cohabitation to be the principle drivers.

Read more...

Wednesday
Jun152016

A PhD in science is the gateway to a great career

From inside academia we often bemoan the horrible bottleneck that young scientists need to squeeze through in order to land a professorship. The number of post-doc places is far lower than the number of PhDs, and the number of professorships opening up is smaller again, leading to only 2% of PhDs ending up as a Professor. Does this make it a bad career decision to get a PhD in science? No!

The thing that we usually forget to mention, is that while 2% of science PhDs end up with a Professorship, 98% of science PhDs end up having a successful career. A PhD in science is such fantastic training that graduates are highly sought out for diverse jobs that go way beyond active research - including policy, communication, regulation, administration and business development. Only 2% of science PhDs stay unemployed*, far below the population average.


So yes, there is certainly a bottleneck in the academic career pathway. But I also want my PhD students to look at the bright side - as a PhD student you get to spend years doing fun science, contributing to knowledge of the world, and then at the end you are going to be highly sought out on the job market. Some of you will end up in academia, some in research and others in a diverse set of interesting jobs that you cannot predict today. But you will all be a success. 

---

* A recent newspaper article claims that the figure is 39%, but basically they misunderstood the data they were using, and counted as unemployed PhD graduates who filled out the form months before they graduated

Tuesday
Jun072016

Three major breakthroughs in the immunology field