Entries in immunology (106)
Promising new insights into ALS

VIB research marks new step in understanding neurodegenerative diseases
Research into amyotrophic lateral sclerosis (ALS) conducted by VIB-KU Leuven has led to interesting and unexpected conclusions. When scientists were investigating the relevance of the higher expression of the IP3R2 protein in blood of ALS patients, the general expectation was that lowering the expression of this protein would have a protective effect on the affected motor neurons. But the exact opposite was true: IP3R2 turned out to be a protector against the negative effects of inflammation during ALS. Even more, the same mechanism may also apply to other diseases, such as stroke and multiple sclerosis.
This research was conducted in the VIB Laboratory of Neurobiology, led by professors Ludo Van Den Bosch and Wim Robberecht (VIB-KU Leuven). Other laboratories involved include Adrian Liston’s Translational Immunology laboratory (VIB-KU Leuven), Jo Van Ginderachter’s Inflammation Research Center (VIB-Vrije Universiteit Brussel), UZ Leuven and the Brain Science Institute RIKEN in Japan. The study’s remarkable conclusions are published in the renowned scientific journal Human Molecular Genetics.
Protective receptor
ALS is a fatal and currently incurable neurodegenerative disease caused by the progressive loss of motor neurons and denervation of muscle fibers, resulting in muscle weakness and paralysis. In Europe, 2.7 out of every 100,000 people are diagnosed with ALS on a yearly basis. Around 10% of all cases are hereditary, 20% of which are caused by mutations in the gene encoding superoxide dismutase 1 (SOD1). For this type of ALS, mouse models have been developed and were used in this VIB research project.
Prof. Ludo Van Den Bosch (VIB-KU Leuven): “In blood of sporadic ALS patients, as well as in models of chronic and acute neurodegeneration, there is a significantly higher expression of the intracellular receptor IP3R2. When we removed the gene encoding IP3R2, the ALS mice didn’t just die quicker, we also saw systemic inflammation and increased expression of certain cytokines, proteins that plays an important role in the immune system. As a consequence, we conclude that doing the opposite, which is increasing the amount of IP3R2, is a protective response. Not only for ALS, but also for other neurogenerative diseases.”
An unexpected twist
The research process is a prime example of good science, where no hypothesis whatsoever pre-determines the outcome. Although the scientists expected that deleting the gene encoding IP3R2 which is responsible for the release of calcium from intracellular calcium stores would have a positive effect on the survival of motor neurons, the study proved the opposite: IP3R2 deletion had a negative effect on the survival of the ALS mouse model.
Prof. Ludo Van Den Bosch (VIB-KU Leuven): “The negative effects of IP3R2 removal in other cell types seem to outweigh the potential benefits of removing IP3R2 in motor neurons. In the case of unexpected findings like this, a researcher has two options: to stop the project, or to dig deeper into the problem. The last strategy is the most challenging one, as the outcome is uncertain. But, in this case, it has yielded interesting new insights, supported by our data.”
Next steps
The VIB lab is currently involved in a new ALS study in collaboration with the Stem Cell Institute Leuven (SCIL) and supported by the Belgian ALS Liga. Focusing on different cell types derived from skin fibroblasts of ALS patients, scientists are looking for aberrations in their calcium metabolism. The research into the role of the IP3R2 can serve as an important foundation, as it helps to strengthen the scientific community’s understanding of the mechanisms that may protect motor neurons.
Prof. Ludo Van Den Bosch (VIB-KU Leuven): “We have now proven that some aspects of inflammation could play an important role in the disease, which could eventually open new therapeutic options for patients. But if we really want to cure ALS, we need to understand all the ins and outs of ALS on the patient’s cellular level. Studies like ours are crucial pieces of this complex puzzle that we need to solve before we can develop a successful therapy.”
Read more: Staats, et al., Genetic ablation of IP3 receptor 2 increases cytokines and decreases survival of SOD1G93A mice. Human Molecular Genetics. 2016.



Journal club: Transmissible cancer may not be so rare

Cancer is a disease of our own cells gone wrong. Normally our cells work in harmony with each other, taking cues from each other as to when to proliferate, when to differentiate and when to die. In cancer, mutation takes away this level of regulation, leaving a "selfish cell" that ignores all of these signals and proliferates uncontrollably, even to the point of killing the host.
There have been a handful of rare cases where cancers can actually physically cross-over from one individual to another, such that the second individual is actually growing cancer cells that are not self, but are fully derived from the original host. This has been seen in a few human cases as well as well-described transmissible cancers in Tasmanian Devils and dogs. There was even a recent case study that suggests a tapeworm cancer crossed over into the host. In general, however, it is thought that this type of event is going to be exceptionally rare. Even ignoring the protective effect of our immune system killing foreign cells, it is not like cells from one individual can just float through the air to colonise another. Except, of course, under the water.
A paper just published in Nature looks for transmissible cancers in mussels and clams and finds three examples of cancer cells from one individual clam or mussels infecting and growing in other indiviudals of the same, or even different, species. With high population densities and water flow acting to directly transfer cancer cells, it is probably that transmissible cancers are actually a common feature in many marine environments.
Nature 2016, in press. Widespread transmission of independent cancer lineages within multiple bivalve species. Metzger, Villalba, Carballal, Iglesias, Sherry, Reinisch, Muttray, Baldwin, Goff.



EU-LIFE Science Newsletter

Collaboration news from VIB & Babraham Institute
Enormous diversity is observed in the human immune system, the majority of which is non-genetic in origin. In a collaboration between the VIB and the Babraham Institute, Adrian Liston and Michelle Linterman dissect the causes of immune variation and find age and cohabitation to be the principle drivers.


New insights into Multiple Sclerosis treatments

Multiple Sclerosis is the most common neurodegenerative disease of young adults, affecting 2.3 million people. MS is insidious. It can lie dormant for years, controlled well by treatment, but there is no cure and patients always live with the threat of another attack that takes away more of their function. One of the frustrating aspects of MS is that we have treatments, but we don't really understand them. There are plenty of drugs that work to control MS, but it is impossible to predict which drug will work well for which patient, or how long that drug will work. We don't even really understand the way that the different drugs function - essentially, it is a guessing game to find which treatment will work best in which patient; a guessing game that dangerously chews up time as the disease progresses.
In a major new study just released, the Translational Immunology laboratory teamed up with the Neuroimmunology laboratory (led by Prof An Goris) and performed the first large-scale in-depth immunological analysis of multiple MS treatments. We profiled the immune systems of 245 individuals, including untreated MS patients and MS patients being treated with four standard treatments - interferon-beta, glatiramer acetate, natalizumab, or fingolimod. Since all the treatments are effective in at least some patients, we had expected to find that each treatment ould have a similar impact on the immune system. Instead, the results were surprising - each of the treatments did something different to the immune system.
In fact, the only common response we found to MS treatment was an increase in the serum cytokine BAFF. The confusing part is that BAFF was thought to be detrimental during MS - several mouse trials found that increased BAFF drives more severe disease, while inhibiting BAFF cured disease. These mouse results were strong enough that two clinical trials had started injecting anti-BAFF antibodies into MS patients in the hope of stopping disease progress. And yet, we found that BAFF was going up in patients that were given multiple different effective MS treatments! Our model suggests that increased BAFF may actually be a protective part of MS treatment, so is it wise to give MS patients anti-BAFF? Unfortunately, our model appears to be correct, as the two trials of BAFF in MS have now been prematurally stopped, due to excessive adverse events.
There are three major lessons to be learned from our study:
First, we should look at testing drugs that increase BAFF rather than decreasing BAFF. This may be a promising avenue for treating MS in patients that do not respond to existing drugs.
Second, we should stop assuming that we understand how existing drugs work. Every drug that we give has multiple impacts on the body, and we should not assume that we know which of these impacts are the protective ones. By identifying which particular impacts are shared across multiple effective drugs, then we are more likely to be looking at the protective effects. If our study had been performed earlier, then I doubt anyone would have gone ahead and given anti-BAFF antibodies to MS patients, and these adverse events could have been avoided.
Third, further large-scale immune analyses such as ours may allow us to predict which patients will respond to which drugs best. In MS this is critical - time spent on an ineffective drug means function is lost that will not be regained - patients need the right drug as soon as possible.
You can read more about our study at Neurology: Neuroimmunology & Neuroinflammation:
Dooley*, Pauwels*, Franckaert, Smets, Garcia-Perez, Hilven, Danso-Abeam, Terbeek, Nguyen, De Muynck, Decallonne, Dubois, Liston* and Goris*. 'Immunologic profiles of multiple sclerosis treatments reveal shared early B cell alterations'. 2016 vol. 3 no. 4 e240




Activating inflammation

My recent seminar at the Cold Spring Harbor Laboratory:


Flemish scientists find cure for rare immune disease

A long wait
The disease – known as PAAND – causes severe skin lesions, muscle pain and general exhaustion. It first came to light about 10 years ago, when paediatric rheumatologist Carine Wouters (pictured right) was confronted with the case of a 13-year-old boy who was brought to the emergency department at Leuven University Hospital.
“Because of a cardiac muscle infection, the boy suffered from heart problems, but we quickly realised that the condition was part of a broader auto-inflammatory disease,” says Wouters.
To her amazement, the doctor soon discovered that other members of the young patient’s family were exhibiting similar symptoms. “But the cause remained unknown,” she says.
Unbearable pain
The boy’s father, who prefers to remain anonymous, has suffered from the same mysterious disease for most of his life. “Since I was five, I have had severe muscle pains, and I’ve suffered from extreme exhaustion,” he says. “Sometimes, I couldn’t even stand up and had to stay home from school for days, just to recover.”
He eventually finished school and found a job, but the condition made his career as a truck driver no less difficult. “The older I got, the more frequently I had to pull over to the side of the road and rest for a few hours,” he says.
The pain was so unbearable, he often couldn’t sleep through the night. As more health problems accumulated, the now 50-year-old man was forced to quit his job.
Sometimes, I couldn’t even stand up and had to stay from school for days, just to recover
- PAAND PATIENT
Altogether, 12 members from three generations of the West Flemish family are afflicted with the disease. Until now, doctors could only ease their suffering with anti-inflammatory drugs and painkillers.
Genetic mutation
The breakthrough discovery of PAAND is the result of an extensive DNA comparison between the patients’ blood and that of their family members who are not affected by the disease.
The study was led by KU Leuven professor Adrian Liston, who also works at Flanders’ life sciences research institute VIB. Liston’s team collaborated with scientists from the Walter and Eliza Hall Institute in Melbourne, Australia.
The researchers traced the cause to a mutation of a gene known as MEFV. They determined that the mutation tricks the body into responding to a bacterial skin infection, even if there isn’t one. The response causes the skin to produce an inflammatory protein called interleukin-1 beta, which causes skin lesions, fevers and pain.
“If you have the flu, the fever and exhaustion you experience are the result of your immune system putting a lot of energy into battling the infection and not having enough energy left to allow you to function normally,” Liston explains.
With PAAND, he continues, “the immune system diverts much of that energy into fighting an infection that isn’t actually there, with disastrous consequences”.
Only one of the parents needs to carry the mutation for the disease to affect their children, though it isn’t necessarily passed on to every child.
The cure
“These insights were made possible because DNA analysis has become more innovative and affordable,” explains Liston. “We also couldn’t have done it without the collaboration with our colleagues abroad.”
Once they understood how the disease operates, the scientists started looking for a treatment. They found it in a drug called anakinra, also known under the brand name Kineret. While the drug is used in treating rheumatoid arthritis, Liston found it also has the ability to block the protein that causes PAAND.
We hope that the discovery will improve the quality of life for many other people in Flanders and abroad
- DR CARINE WOUTERS
The medication is now being tested on five members of the family from West Flanders, including the father. “I hope the drug can make our lives more normal,” he says.
For the time being, his son is recovering from a second heart transplant and cannot take the medication. The scientists are planning to involve him and other patients at a later stage.
Dr Wouters, who has stood by the Flemish family over the past 10 years, is happy that their resilience has finally been rewarded. “We hope that the discovery will improve the quality of life for many other people in Flanders and abroad,” she says. Doctors in France and Lebanon have already indicated that they also have patients with PAAND.
The next steps
The treatment was first carried out in the UK because the country’s health-care system reimburses the drug anakinra. For the tests on Flemish patients, KU Leuven researchers negotiated directly with the drug’s manufacturer, the Swedish company Orphan Biovitrum.
We know about 6,000 rare diseases, and more innovative techniques could help us to identify new ones
- DR CARINE WOUTERS
The two scientists have called on Belgium’s federal health minister Maggie De Block to focus more attention on diseases like PAAND. “Rare diseases are not rare,” Wouters says. “We know some 6,000 of them, and more innovative techniques could help us to identify new ones.”
According to Liston, more newborn babies should also be screened for immune system deficiencies. This, he says, could help prevent medical conditions later in life, which “not only affect the person’s overall health, but result in high costs to the social security system”.



PAAND in the news

The write-ups range from the International Business Times to Nature Middle East to Science!



Decennia-oude, mysterieuze ziekte geïdentificeerd en mogelijke behandeling gevonden

Een mysterieuze ontstekingsziekte teistert al drie generaties lang een Vlaamse familie met ernstige huidletsels, koorts, pijn en uitputting. De ziekte, waarvoor men tot nu toe geen oorzaak of behandeling had gevonden, is nu geïdentificeerd als pyrine-geassocieerde auto-inflammatie met neutrofiele dermatose (Pyrin Associated Autoinflammation with Neutrophilic Dermatosis, afgekort PAAND), en werd ook vastgesteld bij families in Engeland en Frankrijk. In een nieuw onderzoek hebben Adrian Liston (VIB/KU Leuven) en Carine Wouters (UZ Leuven/KU Leuven) de genetische mutatie ontdekt die de ziekte veroorzaakt, en ook een doeltreffende behandeling gevonden. Hun onderzoek werd gepubliceerd in het internationale wetenschappelijke tijdschrift Science Translational Medicine.
Al decennia lang kampen families in België, Engeland en Frankrijk met een mysterieuze ziekte die huidletsels, koorts, pijn en uitputting veroorzaakt. Elke generatie krijgt de helft van de kinderen van personen die de ziekte hebben, dezelfde symptomen. Artsen waren er niet in geslaagd de ziekte te identificeren of een doeltreffende behandeling te vinden. Nu is de identificatie eindelijk een feit en is dankzij een internationaal onderzoeksteam ook een behandeling gevonden.
Prof. Adrian Liston (VIB/KU Leuven, hoofd van het wetenschappelijk onderzoeksteam): “Dankzij het nauwgezette werk van de artsen weten we nu dat we te maken hebben met een erfelijke aandoening. Dankzij de vooruitgang in de DNA-sequentietechnologie konden we het genoom van deze patiënten bepalen en de mutatie opsporen die de ziekte veroorzaakt.”
Het gaat om een mutatie in het MEFV-gen. Mensen die van hun beide ouders een MEFV-gen met een mutatie overgeërfd hebben, lijden aan de ontstekingsziekte familiaire mediterrane koorts (FMF), een ontstekingsziekte. Bij PAAND-patiënten gaat het echter om een andere mutatie in het MEFV-gen én is één enkele kopie van de mutatie voldoende om de ziekte door te geven. Dit betekent dat de helft van de kinderen van de patiënten de ziekte overerven, in tegenstelling tot de mutaties die FMF veroorzaken (die vaak een generatie overslaan). De PAAND-mutatie zorgt ervoor dat het lichaam reageert alsof er een bacteriële huidinfectie plaatsvindt. Daardoor gaat de huid het ontstekingseiwit interleukin-1β produceren, dat huidletsels, koorts en pijn veroorzaakt.
Een behandeling voor de nieuwe ziekte?
Dankzij het opsporen van de biologische oorzaak van deze ziekte kon men ook een nieuwe behandeling bepalen. De onderzoekers hergebruikten anakinra (Kineret ®), een middel tegen artritis dat zich richt tegen interleukin-1β, dat ook bij PAAND een belangrijke rol speelt. De resultaten bij een eerste patiënt, uit een Engels gezin, waren opvallend positief. De huidletsels verdwenen snel en de patiënt herstelde helemaal van de koorts en de pijn. Op dit moment wordt een uitgebreidere test uitgevoerd bij Vlaamse patiënten, om te zien of deze gerichte behandeling tot een volledige genezing kan leiden.
Prof. Carine Wouters (KU Leuven/UZ Leuven, hoofd van het klinische onderzoeksteam): “Dit is het resultaat van een intense samenwerking tussen artsen en wetenschappers die al bijna tien jaar de ziekte trachten te begrijpen. Ik ben verheugd vast te stellen dat we deze zeldzame mutatie nu beter begrijpen en dat we voor deze patiënten de weg hebben geopend naar een doeltreffende therapie.”
Citaat van een patiënt: “We zijn blij en heel dankbaar dat de artsen en wetenschappers hun zoektocht naar de oorzaak van de ziekte die onze familie al zo lang treft, nooit hebben gestaakt. We hopen dat de nieuwe behandeling gunstig zal zijn voor onze familie. En we beseffen ook dat de bevindingen andere patiënten zullen helpen om een correcte diagnose en behandeling te krijgen.”
Prof. Adrian Liston (VIB/KU Leuven, hoofd van het wetenschappelijk onderzoeksteam): “Dit is een uitzonderlijke periode voor het onderzoek rond erfelijke aandoeningen. We helderen elke maand klinische gevallen op die enkele jaren geleden nog niet op te lossen waren. We ontdekken nieuwe mutaties en beschrijven nieuwe ziektebeelden en ziektemechanismen waarvoor ook nieuwe werkzame geneesmiddelen kunnen worden voorgeschreven. Patiënten komen daardoor soms in moeilijke situaties terecht, waarbij de wetenschap een oplossing kan bieden, maar de ziekteverzekeringen de kosten voor geavanceerde diagnosetests of nieuwe behandelingen nog niet kunnen terugbetalen. Dit vormt dan ook een uitdaging voor zowel de farmaceutische industrie als de overheid. Zowel nieuwe medicijnen als bestaande medicijnen voor nieuwe indicaties dienen ter beschikking worden gesteld van patiënten die – op basis van genetische testen – zeer goed kunnen gedefinieerd worden.
Prof. Carine Wouters en prof. Adrian Liston hebben het Leuven Universiteitsfonds Ped IMID (Pediatrische Immuun-inflammatoire aandoeningen) opgericht, een waarmee ze middelen willen werven om onderzoek, diagnose en behandeling mogelijk te maken voor personen die lijden aan zeldzame immuunziekten die momenteel niet door de ziekteverzekeringen worden gedekt.
Ook gelezen: De Staandard, Het Laatste Nieuws, Het Nieuwsblad, De Morgan



